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LE'ITER TO THE EDITOR 

Phase transitions in nonlinear Abelian Higgs models 

I D Lawrie and C Athorne 
Department of Physics, The University, Leeds LS2 9JT, UK 

Received 1 July 1983 

Abstract. Phase transitions in O(n)  nonlinear U models coupled to an Abelian gauge field 
are studied near two dimensions. For all n > 0, the transition is governed by the renormalisa- 
tion-group fixed point of the CP2"-' model. There is no fluctuation-induced first-order 
transition. 

There have been a number of studies of phase transitions in Abelian Higgs models, 
defined by a Euclidean Lagrangian density 

2 = &(a, + i eA, ) 4 (a, - i eA, ) & + V( (b X +a ) + iF,  yFFY. ( 1 )  
In these models, a scalar field with i n  complex components 4a = 4: +i(bt has a 
self-interaction described by the potential V(4X4,) and is coupled to a single gauge 
field A,, whose field strength tensor has the usual form FPy = a,A, -a,,&. Summations 
over p,v = 1 . . . d and a = 1 . , . &n are implied in (1). For spatial dimensionality d 
near four, and with a self-interaction given by 

V(X) = irx + (1/4!)ux2, ( 2 )  

perfurbation theory suggests that the phase transition which occurs as r passes through 
a critical value T,(u, e )  is driven weakly first order by fluctuations whenever n < 
no(d)  = 365.9+0(4-  d ) ,  while for n > no it may be second order for U 2 constant X e2 
(Halperin et al 1974, Chen et al 1978, Lawrie 1982a, see also Coleman and Weinberg 
1973). The first-order character is inferred essentially from the absence or inaccessi- 
bility of an infrared-stable fixed point of the renormalisation group. However, the con- 
struction of a free energy which explicitly verifies such behaviour can be carried 
through in practice only when the electric charge e is sufficiently small (Lawrie 1982b). 
Moreover a Monte Carlo simulation of the two-component model ( n  = 2) in three 
dimensions provides no evidence for a first-order transition (Dasgupta and Halperin 
1981). This may indicate that, at least for the value of the charge used in the simulation, 
some mechanism inaccessible to perturbation theory is responsible for the continuous 
nature of the transition, or else that no(3) is actually less than two. It could also be 
that the apparently first-order character near four dimensions is merely an artefact of 
low-order perturbation theory. 

In pursuit of this question, we have studied the nonlinear realisation of these models 
in d = 2 +  E dimensions. That is, we replace V by the constraint 4z4a = 1, and use 
the partition function 
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where t is now the temperature-like variable, and 2 is given by (1) with V omitted. 
Formally, this is equivalent to taking the limit U = -6rt+03 in the potential ( 2 ) .  On 
general grounds of universality, we expect this model to exhibit the same phase 
transitions as that defined by (2) except possibly in regions of the (U, e2)  plane which 
are inaccessible to renormalisation-group flows from the region of large U. However, 
the perturbation method available for dealing with the nonlinear model takes the form 
of a low-temperature expansion combined with an expansion in powers of E = d - 2 
(BrCzin and Zinn-Justin 1976). It is a quite different type of approximation from the 
expansion in powers of U, e2 and (4- d )  which is available for the linear model. 
Consequently, evidence for a first-order transition in the nonlinear models near two 
dimensions would greatly strengthen our confidence that the effect is genuine. W e  
find no evidence of a first-order transition. 

When e = 0, our model reduces to the O( n )  -symmetric nonlinear U model. Renor- 
malisation-group analysis (BrCzin and Zinn-Justin 1976) reveals a fixed point which 
is infrared-unstable to temperature perturbations from the critical value t* = 
~ / ( n - 2 ) + 0 ( ~ ~ ) .  In the limit e + m ,  the substitution A,  = e- ' (B, -&b:; ,&)  yields 
the CP$"-'-symmetric nonlinear U model with B, decoupled, 

2? + id,+: d p 4 a  +A(+: a",+a l 2  +a,& (4) 

which has an infrared-unstable fixed point r** = E / n  +O(e2) (Hikami 1979). Using 
the method described below, we have extended this analysis, at first order in E ,  to the 
entire ( e 2 ,  r )  plane. If fluctuation-induced first-order transitions were to occur, we 
would expect to find some range of values of e2  for which the transition temperature 
lay outside the domains of attraction of both these fixed points. We find that the 
neutral model is indeed unstable to the gauge coupling at all temperatures. However, 
for all n > 0, there is a smooth separatrix which divides the ( e 2 ,  t )  plane into a 
high-temperature and a low-temperature region (figure 1). It terminates at the CP2"-l 
fixed point which attracts renormalisation-group flows along it. Wh7n the neutral fixed 
point exists, i.e. for n > 2 ,  it forms the beginning of the separatrix. 

Even in the two limiting cases, it is no easy matter to demonstrate explicitly that 
symmetry is restored above the fixed point (see, however, discussions by Jevicki (1978), 

Figure 1. Renormalisation-group flows for n = 4 and E = 1 .  Arrows indicate flow towards 
the infrared. 
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McKane and Stone (1980) and Amit and Kotliar (1980) for partial clarification). In 
the low-temperature phase, however, the existence of the fixed point suffices to obtain, 
at least formally, an order parameter and an inverse correlation length which vanish 
continuously as the fixed point is approached (BrCzin and Zinn-Justin 1976). Given 
that the fixed points are indeed critical points, it follows that the separatrix in figure 
1 is a line of critical points governed, except for e'=O, by the Cl''"-' fixed point. 

The main steps in our calculation are as follows. We first write the scalar fields as 
{U exp (io), re} where U and 8 are real and ra (a = 2 . .  . in) are the complex com- 
ponents transverse to the direction of ordering. The partition function may then be 
written as 

Taking into account the constraint u2 + r' = 1, we write the effective Lagrangian as 

Ye, = $( a, + ieA, ) rz (a, - ieA, ) r, + (a, - i eA, ) ( 1 - rz r, ) 1 / 2 ) 2  

+$(l-.rr~.rrU)(a,8)'-e(l -.Irz.Ir,)A,a,e (6) 
+$F,,F,Y+(25)-'(d,A, - 5 a e 8 ) 2 H ( 1 - r z r , ) 1 / 2 ~ ~ ~  8 

which now includes a gauge-fixing term proportional to (25)-' and a source H coupled 
to 4;. Inside the gauge-fixing term, the parameter a = 1 + O ( t )  is chosen so as to 
eliminate, at each order of perturbation theory, the zero-momentum component of 
the Green function which connects A, and 8. Note that the gauge-fixing term we 
have chosen may be introduced without compensating ghost fields and also that with 
our choice of fields, U and 8, no Jacobian arises from the elimination of U. In the limit 
e'+ CO with 5 # 0, the gauge condition becomes 8 = 0. 

The one-loop graphs which contribute to the various two-point Green functions 
are shown in figure 2. The function connecting A, and 8, figure 2 ( a ) ,  depends on the 
external momentum only through an overall factor p ,  at this order and can be made 
to vanish by a suitable choice of a in ( 5 ) .  For finite values of e2, renormalisation is 
accomplished by minimal subtraction of poles at E = O .  In the limit e 2 +  CO, the 
independent fields which survive are r' and B,. We ensure that their propagators 
remain finite, order by order in E and t, by subtracting also appropriate powers of 
ln(l+e')  and ln( l+5e2) .  Details of this scheme will be described in a separate 

( d l  

Figure 2. One-loop contributions to two-point Green functions. (a )  the A,-8 propagator, 
( b )  the photon propagator, (c )  the. 8 propagator, ( d )  the T*Y propagator. A stroke 
(+) indicates a factor of p,, the momentum carried by the line. 
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publication: an analogous procedure is described in Lawrie (1981,1982a). In par- 
ticular, the temperature and electric charge are renormalised according to 

to = p- ‘ t [ l+  ( n  - 2 ) t / ~  - t I n ( l +  e’) + 0 ( t 2 ) ]  

e; = p’e2[1 - ( n  - 2 ) t /  E + O( t 2 ) ]  

(7) 

( 8 )  

where now, on the left, subscripts denote the bare parameters appearing in ( 5 )  and 
(6). The arbitrary renormalisation mass scale p is introduced to make t and e 
dimensionless, and the usual geometrical factor 2 ~ ~ ” / ( 2 7 r ) ~ ( $ d  - l ) !  has been absor- 
bed into t. At first order of the double expansion in powers of t and E ,  the corresponding 
renormalisation-group functions are 

~ ( t ,  e’) = pat/aplI,,= ~ t - [ n - 2 / ( 1 +  e 2 ) ] t 2  

ye( t ,  e’) = pa In e’/aplI,,= 2- ( n  -2)t .  

( 9 )  

(10)  

To accommodate the limit e* + a, we define 4 = e * / (  1 + e’). Then the evolution of the 
effective temperature i ( A )  and charge squared q ( A )  under a change of momentum 
scale by a factor A is governed by the renormalisation-group flow equations 

A a i / a A  = ~ i - ( n - 2 + 2 4 ) 1 ’  (11)  

A a q . / a A  = -q(1-  q ) [2 -  ( n  - 2)  51 (12)  

with i( 1 )  = t and q( 1) = q. Some trajectories generated by these equations are illus- 
trated in figure 1 for the case n = 4 and E = 1 ,  where arrows indicate the direction of 
flow in the infrared limit A + 0. There are zero-temperature fixed points at q = 0 and 
q = 1 associated with Goldstone mode singularities in the neutral and charged models 
respectively. At non-zero temperatures there are the two known fixed points at 
( q , t ) = ( O , ~ / ( n - 2 ) )  and ( q , t ) = ( l , ~ / n ) .  The former recedes to ?=CO at n = 2 ,  
reflecting the special properties of the neutral two-dimensional XY model. However, 
except for n = 0, the separatrix represents a finite critical temperature tc (q )  for all 
non-zero q. 

We conclude that, except possibly in the limit n+0,  addition of a gauge field to 
the O ( n )  model does not lead to a first-order transition near two dimensions. 
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